Pages

Jun 25, 2013

Time Travel - Wormholes


The theory of general relativity predicts that if traversable wormholes exist, they could allow time travel. This would be accomplished by accelerating one end of the wormhole to a high velocity relative to the other, and then sometime later bringing it back; relativistic time dilation would result in the accelerated wormhole mouth aging less than the stationary one as seen by an external observer, similar to what is seen in the twin paradox. However, time connects differently through the wormhole than outside it, so that synchronized clocks at each mouth will remain synchronized to someone traveling through the wormhole itself, no matter how the mouths move around. This means that anything which entered the accelerated wormhole mouth would exit the stationary one at a point in time prior to its entry.

For example, consider two clocks at both mouths both showing the date as 2000. After being taken on a trip at relativistic velocities, the accelerated mouth is brought back to the same region as the stationary mouth with the accelerated mouth's clock reading 2004 while the stationary mouth's clock read 2012. A traveler who entered the accelerated mouth at this moment would exit the stationary mouth when its clock also read 2004, in the same region but now eight years in the past. Such a configuration of wormholes would allow for a particle's world line to form a closed loop in spacetime, known as a closed timelike curve.

It is thought that it may not be possible to convert a wormhole into a time machine in this manner; the predictions are made in the context of general relativity, but general relativity does not include quantum effects. Analyses using the semiclassical approach to incorporating quantum effects into general relativity have sometimes indicated that a feedback loop of virtual particles would circulate through the wormhole with ever-increasing intensity, destroying it before any information could be passed through it, in keeping with the chronology protection conjecture. This has been called into question by the suggestion that radiation would disperse after traveling through the wormhole, therefore preventing infinite accumulation. The debate on this matter is described by Kip S. Thorne in the book Black Holes and Time Warps, and a more technical discussion can be found in The quantum physics of chronology protection by Matt Visser. There is also the Roman ring, which is a configuration of more than one wormhole. This ring seems to allow a closed time loop with stable wormholes when analyzed using semiclassical gravity, although without a full theory of quantum gravity it is uncertain whether the semiclassical approach is reliable in this case.

A possible resolution to the paradoxes resulting from wormhole-enabled time travel rests on the many-worlds interpretation of quantum mechanics. In 1991 David Deutsch showed that quantum theory is fully consistent (in the sense that the so-called density matrix can be made free of discontinuities) in spacetimes with closed timelike curves. However, later it was shown that such model of closed timelike curve can have internal inconsistencies as it will lead to strange phenomena like distinguishing non orthogonal quantum states and distinguishing proper and improper mixture. Accordingly, the destructive positive feedback loop of virtual particles circulating through a wormhole time machine, a result indicated by semi-classical calculations, is averted. A particle returning from the future does not return to its universe of origination but to a parallel universe. This suggests that a wormhole time machine with an exceedingly short time jump is a theoretical bridge between contemporaneous parallel universes. Because a wormhole time-machine introduces a type of nonlinearity into quantum theory, this sort of communication between parallel universes is consistent with Joseph Polchinski’s discovery of an “Everett phone” in Steven Weinberg’s formulation of nonlinear quantum mechanics.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.